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Microlauncher, mathematical model for orbital
injection
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Abstract— The purpose of this paper is to present some aspects
regarding the computational model and performance evaluation for
three stages microlauncher (ML) used to inject into circular orbit a
small size payload. The computational model consists in numerical
simulation of ML evolution for imposed start conditions and
optimisation of flight parameter in order to obtain injection into
circular orbit. The microlauncher model presented will be with three
degrees of freedom (3DOF) and variable mass. The results analysed
will be the flight parameters and the ballistic performances. The
discussions area will focus around the technical possibility to
evaluate the performance of a multi-stage launcher using the
developed model.
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Nomenclature

Y, - Azimuth angle;

@- Geocentric latitude;

A - Geocentric longitude;

Y - Air -path climb angle;

X - Air -path track angle;

0, - Pitch angular deflection;

0,, - Yaw angular deflection;

Q,, Rotation velocity of the quasi-velocity frame
Q - Earth spin;

D Drag aerodynamic force;

T - Thrust force;
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XT:Y";Z" -Thrust force components in body frame;

m - Mass;
t - Time;
V - Velocity;

V., Vy ,V, - Velocity components in start frame;
OPXPYpr - Earth frame;

0,X,Y,Z, -Local frame;

Og XY, Z - Start frame;

7 - The distance between rocket and Earth center:
R b " Earth radius;

€ - Gravitational acceleration;

e - Eccentricity;

a -Semi-major axe;

0 - True anomaly;

P The orbit parameter;

I. INTRODUCTION

TODAY it is most often that micro or nano satellites are
carried into space as “an additional payload” or the so

called “piggyback” missions. It is too costly to dedicate a
separated mission that involves a relatively large launcher to a
satellite which mass is much smaller than the designed mass
of the launcher. Therefore, the necessity of designing
launchers for satellites weighing up to 100 kg is justified. ESA
has basically three launchers for GTO orbit: VEGA, for
satellites with a mass ranging from 0,5 to 1,5 ton ; Soyuz, for
satellites with a mass of 4,5 - 8,0 ton; Ariane for satellites
with a mass of 10 - 21 ton. If a country from Europe would
like to launch a satellite with a mass of 100 kg, or a few
smaller ones for a dedicated mission, they have to buy the
launch from Russian, USA, Chinese or Indian. Since the
number of such satellites will be increasing in the near future,
Europe and ESA should develop a small rocket launcher to
close the gap in the existing family of European launchers and
allow a more easy and independent access to space for
European micro or nano satellites. Starting from this necessity,
Romania under ESA coordination promoted a pilot-project
consisting in the analysis of the possibility to achieve
microlauncher in zonal cooperation - ML. To approach this
problems and in general for evaluating the launching
capabilities it 1is necessary to elaborate an adequate
mathematical model that ensures the evaluation of the
launcher's capability to inject the payload on different circular
orbit. The mathematical model presented below seeks to
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answer these needs. The model was split into two sub-models.
The first one is dedicated for the finding of the optimal control
parameters by using a gradient method; the second one is used
to evaluate the launcher's flight. Because in this stage we are
interested in evaluating the technical possibility of building a
microlauncher starting from imposed performances and to
make a preliminary dimensional evaluation (preliminary
design), our models were focused on the ascending phase of
the launcher, until the separation of the third stage, and the

definition of the range 7, for the circular orbit reached.

Having in mind this ideas regarding the needs at this stage
from the ML model, we will describe the frames used, the
coordinate transformations, the motion equations and the
guidance relations necessary to define the launcher's motion
during the ascending phase.

II. COORDINATE SYSTEMS

First, we will define the coordinate systems specific for the
motion of the microlauncher.

A. The Earth Frame

This inertial coordinate system is originated in the centre of
the Earth, being loosed from Earth and does not participate in

its diurnal rotation (Earth spin). The axis X » is in the
equatorial plane along vernal axis. Axis Z , 1s along polar

axis, toward North Pole. The axis Y » completes a right frame

being in the equatorial plane

B. The Local Frame

This coordinate system has the origin in the starting position,
being earthbound, and participating in the diurnal rotation

(Earth spin). The axis ¥, is the position along the vector I' at
the start moment. The axis Z, is parallel with the equatorial

plane, being oriented to the East. The axis X, arising is
forming with the first two axes a right trihedral (Figure 1).

C. The Start Frame

This coordinate system has the origin in the starting position,
being earthbound and participating in the diurnal rotation

(Earth spin). The axis Y is the position along the vector I
at the start moment. The axis X ¢ is oriented toward launch
direction and makes an azimuth angle ¥/ related to the X,

axis. The axis Z, is forming with the first two axes a right

trihedral, being oriented to the right related launch plane.
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Figure 2. The rotations between the geographical frame and
quasi-velocity frame

D. The Geographical Mobile Frame

This coordinate system has the origin in the center of mass of
the launcher, being earthbound and participating in the diurnal

rotation (Figure 1). The axis Vg is the position along the

vectorI'. The axis z, is parallel with the equatorial plane,

being oriented to the East. The axis x o 1s forming with first

two axes a right trihedral. The geographical mobile frame
overlaps the local frame at the start moment.
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E. The Geocentric Spherical Frame

This coordinate system originated in the center of the Earth,
being earthbound and participating in its diurnal rotation
(Earth spin). The launcher position can be described using
spherical coordinates A, ¢, 7, as can be seen in Figure 1.

F. The Quasi-Velocity Frame

This coordinate system has the origin in the center of mass of
the launcher. Similarly to the velocity frame, the quasi-

velocity frame has the axis x: along velocity vector, but the

axis y’ itis in vertical plane. . The axis Z: is forming with

first two axes a right trihedral (Figure 2). Next we will use the
trihedral to write the dynamic translation motion equations of
the center of the mass.

III. THE GRAVITATIONAL ACCELERATION

The gravitational acceleration is presented in detail in the
paper [3], being expressed by two terms, one term denoted

g, , oriented along radius 7 and the other term g , parallel

with the polar axis N —S. These two terms, containing only
the gravitational components without centrifugal terms, allow

us to obtain so-called ,,J, “model, which takes into account
the influence of the flattened shape of the Earth:

a,, 3 ay . 2
= ———=(5smn“¢g-1)+...;
2 ( $—1)

Ar 2
d )

a
_q%0 s
gA(”_3_r4 sing—... ,

where the first coefficients of the polynomial development
are:

ay, =3.9861679-10"; %am =26.32785-10*. (2)

1V. THE EQUATIONS OF MOTION IN QUASI — VELOCITY

FRAME

Because quasi-velocity frame is not an inertial frame, the
dynamic equation of motion in quasi-velocity frame has
following form [1][2]:

ov .
E+QV><V=—+g+ac, 3)
where we have grouped aerodynamic and thrust forces.
N=F+T, “4)
and Coriolis acceleration is:
a, =-2Q xV %)

The locale derivative of the velocity in quasi-velocity frame is
oV/ot. Q; is the rotation velocity of the quasi-velocity
frame related the local frame, which can be express in
vectorial form:

Q) =7+y+d+i (6)
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The derivatives of latitude and longitude angles along
geographical frame are:

X:Z(igcos¢+jgsin¢);q5=—kg¢ 7
where i,,j,.k, are unitary vectors in geographical frame.
If we make the projection along quasi-velocity frame we get:

A=A, (cos@cos y cos y +singsiny )+
+j, (—cosgcos ysiny +singcosy )+
+k, (cos #sin )]
é= gﬁ[ia sin ycosy —j,sin ysiny —k_ cos;(]

The derivatives of the climb angle and air -path track angle
are:

®)

7=7K,: %= (i,siny+j,cosy) ©)
In this case, components of angular velocity vector along
quasi-velocity frame become:

@, = A(cosgcos ycos y +singsiny)+
+¢5sin;gcosy/+j(sin7/

(10)

@, = A(—cosgcos ysiny +singcos y)
—@sin ysiny + ycosy
@' = Adcosgsin y —dcos y+7
Taking in consideration that the vector €2 , has the same
orientation with the vector A , we can write:

Q, =Q i, (cosgcos ycosy+singsiny)+
+j, (singcosy —cosgcos ysiny)+ >
+K, (cos¢sin )]

where Coriolis acceleration components in quasi-
velocity frame are:
a,=0;5a,=-2VQ

(11)

=2V Q) cosgsin g ; 12)

a.=2rQ, =2VrQ, (sin @ cosy —cos¢@cos ysin 7)
The gravitational acceleration previously presented is
being expressed by two terms, one term denoted g, and
oriented along radius 7 and the other term g parallel with

polar axis N —S. These two terms contain gravitational
components and also centrifugal components given by the
Earth's spin.

8 =8, Q1 g,=8,,+Qrsing, (13)

whereg, and g, are given by relations (1) , (2),

depending of the range » and the latitude angle ¢:

Next we will project the terms given by relation (13) along
quasi-velocity frame. For this we need to keep in mind
that term g, is along the angular velocity vector ), given

by relation (8), and term g » 18 along angular velocity vector

A, given by relation (8) but contrary to it. In this case we
yield:
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g, =—g,siny—
-g, (cosgcos y cos y +singsiny) ;
g, =—g,cosy—
—g,(—cosgcos ysiny +singcosy) ;
g.=—g,cosgsin y.

Summarizing, starting from relation (3), we obtain the
dynamic equation which describes the motion of the center of
mass of the launcher in quasi-velocity frame[1]:

(14)

X

N .
—g,siny—
m

V=

-g, (cosgcos y cos y +singsiny)
N, g

7=—Iy/ cosy —
m
—%(—cos¢coslsin}/+sin¢cosy)+

% (15)
+—cosy —2Q) cosgsin y
r

N,

Z

cos @sin
L 8,cos¢siny

_chosy V cosy

V .
+—tang¢@sin ycosy +
r

+2Q  (cosgcos y tan y —sin @)

complemented with kinematic equations:

szsiny.;/}:Kcoszcosy ;
r

Z__Vsin;(cos;/_ (16)
rcos¢

where N _,N s N _ are projection of the applied forces along

quasi-velocity frame.
Supposing aerodynamic angles are very small, the components
of the applied forces become:

N,=-D+X",N,=Y",N,=Z" (17)

where X7;Y";Z" are the thrust components and D is the
drag force.

Considering that the roll commands are given by separate
Reaction Control System (RCS) and pitch O, and yaw O,
commands are given through the angular deflection of the

main Solid Rocket Motor (SRM), the thrust components are
given by:

X" =Tcosd,cosd,;

Y =-Tsing, cosd,; (18)
Z"=Tsing,,
where:
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6r1=k]()/_}/d)+k2ay; 5 :07

m

(19)
with imposed value for climb angle v, . And

T
a,=Y / m;
V. EVOLUTION IN BALLISTIC PHASE, ORBITAL INJECTION

In order to evaluate the ballistic phase and the orbital injection
we use as inertial frame, The Earth Frame.

First we obtain the velocity in geographic frame related to
inertial frame, by adding Earth rotation:

Ve=Vcosycosy, V, =Vsiny;

. (20)
V,=-Vcosysiny+rQ cosg
hence:
v=Vo+Ve +V2 7, =arcsin(Vyg/v) @1

Next we are interested in the angle & between range vector
I' and absolute velocity vector v at the end of the ascending

phase and beginning of the ballistic phase [3]. Heaving Y,
angle, we can write a simple relation:
a=r/2-7, (22)

which allows the obtaining of the o angle. The other two
values: v and I at the end of the ascending phase depend
mainly of the launcher's characteristics: thrust and mass which
are being obtained with equations (15), (16), (21). As it is
shown in work [3] [4] the knowledge of this tree sizes at the
end of the ascending phase is enough for the fully
definition of the launcher's movement in the
ballistic phase. Using Kepler model, one can determine the
orbit elements. Thus we can obtain immediately the kinetic
moment and the unitary energy:

h=rvsina E=v*[2—u/r. (23)
, from where we get the parameter p, the geometrical
elements of the orbit: e - eccentricity and a -semi-major axe
and true anomaly :

p:hz/,u e=1+2Eh’u> azp/(l—ez).
p 1

re e
Starting from Gauss equations [6] we can obtain optimum
pitch and yaw command for injection in circular orbit:

(I+ecosf)sin€ S —0
e(l+cos’ @)+2cos@®’ "

(24)
cos@ =

tang, = — (25)

VI. OPTIMIZING THE ASCENDING PHASE

We start by describing - for a three stage launcher with solid
fuel motor launcher , the typical ascending phase. Lift off is

considerate at f, =0 till #, =25, when the climb angle is

7 =90° and the LV evolution is vertically. At t, =7sthe
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climb angle is y, and maintains this value till 7, =11s.

Between #; and f, (the ignition of stage 3) , the climb angle
At the
ignition of stage 3, ¢, , the climb angle is constraint to take the

has no constrains, being in the gravity turn phase.

value y,. For ML, the burning duration of the first stage is
t,, =72.s and the burnout duration of stage 2 and 3 are the

same f, =t , =45.s (Figure 4). Between the burnout of the
stage 1 and the ignition of stage 2 we have a first costing
phase with a duration Af, . Between the burnout of the stage 2
and the ignition of the stage 3 we have a second costing phase
with a duration A¢, . The fairing jettison is in synchronies with
the separation of the stages 2 — 3. Summarizing, the ascending
phase of ML depends on four independent parameters, Af,
At,, y,, 7,, which can be the subject of optimization in
order to obtain an circular orbit. The strategy adopted consist
in choosing the durations Af,, At,, and obtaining y,, vy, by

optimization, imposing to obtain at the end of ascending phase
a circular orbit. Taking in consideration that for the ballistic
phase we have defined e - eccentricity and a -semi-major
axe we can impose this parameter as performance index:

t
(]:qe—@a+gJyai+aM4, (26)

where €, are the weighting , and minimize them by gradient

method. Supplementary, in relation (26), M was added,
representing the soft constraints for angles y, , Y, which are
defined by [5] as:

M = Z ln[(7k_7ki)(7kg =¥ (s _7/ki)2:|, 27

k=1,2
parameters and sizes Y, , Y, are the inferior limit and the
superior limit impose to parameter 7Y, . If the parameter vy, is
outside of imposed limits Y,, , y,, we choose for M a

very height value.

VII. INPUT DATA FOR ML MODEL
Table 1 Mass Characteristics

Configuration Mass

m [tons]

[nitiallFinal
Stage [ + 11 + III + AVUM + P/L+FER|34.7 [10.7
Stage IT + III + AVUM + P/L+FER |84 [5.5
Stage III + AVUM + P/L 2.0 (0.6
AVUM + P/L 0.47 10.35
P/L 0.1 (0.1

Table 1 shows ML mass characteristics.
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Main geometrical sizes at ML start are: [ =16.6m

d=19m

P/L

AVUM

ST3

7

TVC3

ST2

TVC2

ST1

TvC1

e

Figure 3 ML Configuration

In Error! Reference source not found. we have: P/L
Payload; AVUM - Attitude and Vernier Upper Module; ST -
Stage; TVC - Thrust Vector Control;
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B ——=—— Stage 1
z B Stage 2
=600 k- —— Stage 3
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400
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200 i
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tfs]

Figure 4 Thrust Characteristics in vacuum conditions
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Figure 4 shows the thrust diagram for ML stages in vacuum
conditions.

VIII. TEST CASES

As test case, the following initial conditions were used:
Geographic orientation: Azimuth angle y/, =90° (towards

the East); Geocentric latitude @ =44° (Romania latitude);
Altitude: i, =1m; Initial velocity V, =1[m/s]; Initial
climb angle y,=90°. For At, we choose three values
At, =0 At, =10s At, = 20s. For different values Az, ,

imposing a minima value for performance index (26) , we
obtains values for y, , y, (Figure 5), and the circular orbits

with different ranges (Figure 6). As example, choosing the
values for costing durations: Af, =10s Az, =25s we
obtain the optimal values for climb anglesy, = 64.63°;

¥, =-2.63°. Using these parameters, we have defined a

circular orbit shown in Figure 7, Figure 8.

IX. RESULTS

Figure 5 shows the dependence of optimal second climb angle
Y, related to costing duration At, for the same three values

of Af; (A, =0 At =10s At; =20s). One can observe
that increasing the costing durations Af, or At,, the second
climb angle y, tends toward zero, when o angle tending to
90° (22), case corresponding to a circular trajectory.

Figure 6 Shows a circular orbit altitude obtained related to
costing duration Af, for three values of Af, (Af, =0

At, =10s Af, =20s). It can be seen that for each value

At,, there are two closed curves, corresponding to apogee or

perigee of the orbit. The degree of overlap of the two curves
demonstrates the accuracy of the method used, in the case of
the circular orbit where the two curves must be identical.

Choosing the values for costing durations: Af, =10s
At, =255 we obtain the optimal values for climb angles
¥, =64.63°; ¥, =-2.63°. Using this four parameters we

obtain a circular orbit, the velocity vs. time during ascending
phase and circular orbit being shown on Figure 7. For the
same parameters, Figure 8 shows the climb angle Y vs. time.
One can observe that at the end of the ascending phase the
climb angle becomes zero, which means that & =90° or
that the velocity v is orthogonal on radius # for a circular
orbit.
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Figure 5. Optimal second climb angle for different costing

duration
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Figure 6. Circular orbit altitude for different costing duration
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Figure 7. The velocity diagram
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Figure 8. The climb angle diagram

X. CONCLUSIONS

As we said at the beginning, the paper has as objective the
building of a simple mathematical model able to evaluate
launcher's performances. In order to solve this item, we
separated the launcher's evolution into two phases, the first
phase being the ascending phase until the separation of the
third stage, and the second phase being the ballistic phase until
the launcher or the fourth stage of it reaches the apogee and
the orbital injection is done. For each phase, we developed a
separate calculus model. For the ascending phase we
developed a 3DOF model which describes the functionality of
the launcher in the quasi-velocity frame in accordance with the
work [3]. For the ballistic phase, we used a sample model
based on Kepler's theory [6], which allows us, starting from
initial conditions, to evaluate the apogee in order to obtain a
circular orbit. In order to optimise the ascending phase we
defined for a three stages launcher a typical ascending
evolution and four characteristics parameters. Considering that
small launchers are targeted at a circular orbit, we built a
performance index based on eccentricity and semi major-axe,
which allows the defining of the characteristics parameter of a
trajectory which is able to obtain a circular orbit with
maximum range at the end of ascending phase. The test case
build and the results obtained prove the correctness of the
model developed, including the strategy adopted for
optimising the accessional phase. Considering other case, with
deferent initial condition, we can use the model developed in
order to evaluate the entire field of ML performance. Taking
in consideration that the accuracy of the circular orbit depends
of the technical possibility to realize angular parameters of
ascending phase and also on the accuracy of the predicted
thrust characteristics of the solid rocket motor, we expected
that the direct of injection by using only three stages will not
be enough. In this case the 4th stage is required to make the
final corrections necessary for transferring the payload to
another orbit.
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