
 

 

 
Abstract— The purpose of this paper is to present some aspects 

regarding the computational model and performance evaluation for 
three stages microlauncher (ML) used to inject into circular orbit a 
small size payload. The computational model consists in numerical 
simulation of ML evolution for imposed start conditions and 
optimisation of flight parameter in order to obtain injection into 
circular orbit. The microlauncher model presented will be with three 
degrees of freedom (3DOF) and variable mass. The results analysed 
will be the flight parameters and the ballistic performances. The 
discussions area will focus around the technical possibility to 
evaluate the performance of a multi-stage launcher using the 
developed model. 
 

Keywords— mathematical model, microlauncher, orbital 
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  Nomenclature 
 

0  - Azimuth angle;  

 - Geocentric latitude;  

 - Geocentric longitude;  
 - Air -path climb angle;  

 - Air -path track angle;  

n - Pitch angular deflection;  

m - Yaw angular deflection; 

VΩ  Rotation velocity of the quasi-velocity frame  

pΩ - Earth spin;  

D  Drag aerodynamic force; 
T - Thrust force;  
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TTT ZYX ;; -Thrust force components in body frame;  

m  - Mass;   
t  - Time;  
V  - Velocity;   

zyx VVV ,,  - Velocity components in start frame;  

ppPP ZYXO  - Earth frame; 

LLLL ZYXO  - Local frame;  

S S S SO X Y Z  - Start frame; 

r - The distance between rocket and Earth center:  

pR  - Earth radius;  

g  - Gravitational acceleration; 

e  - Eccentricity;  
 a -Semi-major axe; 
   - True anomaly;  
p  The orbit parameter; 

I. INTRODUCTION 

ODAY  it is most often that micro or nano satellites are 
carried into space as “an additional payload” or the so 
called “piggyback” missions. It is too costly to dedicate a 

separated mission that involves a relatively large launcher to a 
satellite which mass is much smaller than the designed mass 
of the launcher. Therefore, the necessity of designing 
launchers for satellites weighing up to 100 kg is justified. ESA 
has basically three launchers for GTO orbit: VEGA,  for 
satellites with a mass ranging from  0,5 to 1,5 ton ; Soyuz, for 
satellites with a mass of   4,5 - 8,0 ton; Ariane for satellites 
with a mass of  10 - 21 ton. If a country from Europe would 
like to launch a satellite with a mass of 100 kg, or a few 
smaller ones for a dedicated mission, they have to buy the 
launch from Russian, USA, Chinese or Indian. Since the 
number of such satellites will be increasing in the near future, 
Europe and ESA should develop a small rocket launcher to 
close the gap in the existing family of European launchers and 
allow a more easy and independent access to space for 
European micro or nano satellites. Starting from this necessity, 
Romania under ESA coordination promoted a pilot-project 
consisting in the analysis of the possibility to achieve 
microlauncher in zonal cooperation - ML. To approach this 
problems and in general for evaluating the launching 
capabilities it is necessary to elaborate an adequate   
mathematical model that ensures the evaluation of the 
launcher's capability to inject the payload on different circular 
orbit. The mathematical model presented below seeks to 
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E. The Geocentric Spherical Frame  

This coordinate system originated in the center of the Earth, 
being earthbound and participating in its diurnal rotation 
(Earth spin). The launcher position can be described using 
spherical coordinates r,, , as can be seen in Figure 1.   

 

F. The Quasi-Velocity Frame 

 This coordinate system has the origin in the center of mass of 
the launcher. Similarly to the velocity frame, the quasi-

velocity frame has the axis *
ax  along velocity vector, but the 

axis *
ay  it is in vertical plane. . The axis *

az  is forming with 

first two axes a right trihedral (Figure 2). Next we will use the 
trihedral to write the dynamic translation motion equations of 
the center of the mass.  

III.  THE GRAVITATIONAL ACCELERATION 

The gravitational acceleration is presented in detail in the 
paper [3], being expressed by two terms, one term denoted 

rg , oriented along radius r  and the other term g , parallel 

with the polar axis N S .  These two terms, containing only 
the gravitational components without centrifugal terms, allow 
us to obtain so-called „ 2J “model, which takes into account 

the influence of the flattened shape of the Earth: 

200 20
2 4

3
(5sin 1) ...

2Ar

a a
g

r r
    ;   

20
4

3 sin ...A

a
g

r     , 

(1) 

where the first coefficients of the polynomial development 
are: 

14
00 3.9861679 10a   ;   24

20

3
26.32785 10

2
a   . (2) 

  

IV.    THE EQUATIONS OF MOTION IN QUASI – VELOCITY 

FRAME 

Because quasi-velocity frame is not an inertial frame, the 
dynamic equation of motion in quasi-velocity frame has 
following form [1][2]:  

V ct m


    

V N

Ω V g a , (3) 

where we have grouped aerodynamic and thrust forces. 
 N F T , (4) 

and Coriolis acceleration is: 

2c p  a Ω V  (5) 

The locale derivative of the velocity in quasi-velocity frame is
t V . 

VΩ  is the rotation velocity of the quasi-velocity 

frame related the local frame, which can be express in 
vectorial form:   

V     Ω γ χ λ    (6) 

The derivatives of latitude and longitude angles along 
geographical frame are:  

 cos sing g   λ i j  ; 
g  k   (7) 

where 
ggg k,j,i  are unitary vectors in geographical frame. 

If we make the projection along quasi-velocity frame we get:  

 
 
 

[ cos cos cos sin sin

cos cos sin sin cos

cos sin ]

a

a

a

     

    

 

  

   



λ i

j

k

 
 

 sin cos sin sin cosa a a        i j k   

(8) 

The derivatives of the climb angle and air -path track angle 
are:  

aγ k  ;  sin cosa a   χ i j  (9) 

In this case, components of angular velocity vector along 
quasi-velocity frame become:  

 * cos cos cos sin sin

sin cos sin

l      

    

  

 



 
 

 cos cos sin sin cos

sin sin cos

m      

    

    

 



 
 

cos sin cosn             

(10)

Taking in consideration that the vector pΩ  has the same 

orientation with the vector λ , we can write: 

 
 
 

[ cos cos cos sin sin

sin cos cos cos sin

cos sin ]

p p a

a

a

Ω     

    

 

  

  



Ω i

j

k

, (11)

where Coriolis acceleration components in quasi-
velocity frame are: 

0cxa  ; 2 2 cos sincy pz pa V V        ; 

 2 2 sin cos cos cos sincz py pa V V           
(12)

The gravitational acceleration previously presented is 

being expressed by two terms, one term denoted rg  and 

oriented along radius r  and the other term g  parallel with 

polar axis SN  . These two terms contain gravitational 
components and also centrifugal components given by the 
Earth's spin.  

2
r Ar pg g r  ;   2 sinA pg g r    , (13)

where Arg  and Ag   are given by relations (1) , (2), 

depending of the range r  and the latitude angle : 

Next we will project the terms given by relation (13) along 
quasi-velocity frame. For this we need to keep in mind 
that term rg  is along the angular velocity vector χ , given 

by relation (8), and term g is along angular velocity vector

λ , given by relation (8) but contrary to it. In this case we 
yield: 
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 
sin

cos cos cos sin sin
x rg g

g


    
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 
; 
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cos
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y rg g

g


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; 

cos sinzg g    . 

(14)

Summarizing, starting from relation (3), we obtain the 
dynamic equation which describes the motion of the center of 
mass of the launcher in quasi-velocity frame[1]:  

 

sin

cos cos cos sin sin

x
r

N
V g

m
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 
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

 

(15)

 complemented with kinematic equations: 

sinVr  . cos cos
V

r
    ;

sin cos

cos

V

r

 


  ; 

(16)

where , ,x y zN N N  are projection of the applied forces along 

quasi-velocity frame. 
Supposing aerodynamic angles are very small, the components 
of the applied forces become: 

, ,T T T
x y zN D X N Y N Z      (17)

where  ; ;T T TX Y Z  are the thrust components and D  is the 

drag force. 
 
Considering that the roll commands are given by separate 

Reaction Control System (RCS) and pitch n  and yaw m  

commands are given through the angular deflection of the 
main Solid Rocket Motor (SRM), the thrust components are 
given by: 

cos cos ;

sin cos ;

sin ,

T
n m

T
n m

T
m

X T

Y T

Z T

 

 





 



 (18)

where:  

1 2( ) ; 0;n d y mk k a        (19)

with imposed value for climb angle d . And 

 / ;T
ya Y m  

V. EVOLUTION IN BALLISTIC PHASE, ORBITAL INJECTION  

 
In order to evaluate the ballistic phase and the orbital injection 
we use as inertial frame, The Earth Frame.  
First we obtain the velocity in geographic frame related to 
inertial frame, by adding Earth rotation: 

cos cos ;xgV V   sin ;ygV V 
 

cos sin coszg pV V r       
(20)

hence: 
2 2 2

xg yg zgv V V V     arcsini ygV v   (21)

Next we are interested in the angle   between range vector 
r  and absolute velocity vector v  at the end of the ascending 

phase and beginning of the ballistic phase [3].  Heaving i  

angle, we can write a simple relation: 

2 i     (22)

which allows the obtaining of the   angle. The other two 
values: v  and  r  at the end of the ascending phase depend 
mainly of the launcher's characteristics: thrust and mass which 
are being obtained with equations (15), (16), (21).  As it is 
shown in work [3] [4] the knowledge of this tree sizes at the 
end of the ascending phase is enough for the fully 
definition of the launcher's movement in the 
ballistic phase. Using Kepler model, one can determine the 
orbit elements. Thus we can obtain immediately the kinetic 
moment and the unitary energy: 

sinh rv     2 2E v r  . (23)

, from where we get the parameter p , the geometrical 

elements of the orbit: e  - eccentricity and a -semi-major axe 
and true anomaly  : 

2p h     2 21 2e Eh     21a p e  . 

1
cos

p

re e
    

(24)

Starting from Gauss equations [6] we can obtain optimum 
pitch and yaw command for injection in circular orbit: 

 

2

(1 cos )sin
tan ; 0.

(1 cos ) 2cosn m

e

e

  
 


  

   (25)

 

VI. OPTIMIZING THE ASCENDING PHASE 

 
We start by describing - for a three stage launcher with solid 
fuel motor launcher , the typical ascending phase. Lift off is 

considerate at 00 t  till st 21  , when the climb angle is 
090   and the LV evolution is vertically. At st 72  the 
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